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Abstract. We quantify the relationship between the atomic structures of the amorphous and the
ordered and disordered crystalline phases of silica using neutron total scattering measurements to
determine the local atomic configurations. The instantaneous local atomic arrangements of HP-
tridymite andβ-cristobalite, both dynamically-disordered high-temperature crystalline phases, bear
a striking resemblance to the quenched structure of amorphous silica, unlike those of the two phases
of quartz and orderedα-cristobalite. The high-temperature phases are not domain averages of their
respective low-temperature phases. Our approach has wider application for characterization of
disordered crystalline structures in general.

(Some figures in this article appear in colour in the electronic version; seewww.iop.org)

1. Introduction

Silica has been widely studied because of its importance to both materials science and geology,
and also because it has relatively simple crystal structures but a rich phase behaviour [1]. The
equilibrium sequence of phase transitions, prior to melting at 1727◦C, is firstlyα-quartz toβ-
quartz (via an incommensurate phase at 574.3◦C), then to HP-tridymite (867◦C), and finally to
β-cristobalite (1470◦C). The kinetics of these phase transitions can be extremely sluggish, and
there are several other metastable crystalline phases of lower symmetry derived from cooling
HP-tridymite andβ-cristobalite [1], e.g.α-cristobalite fromβ-cristobalite below about 280◦C.

All these phases have structures that are infinite frameworks of corner-sharing SiO4

tetrahedra, with the glass forming a continuous random network [2–4]. The crystalline high-
temperature phases HP-tridymite andβ-cristobalite consist of identical sheets of corner-sharing
SiO4 tetrahedra (figure 1) joined in an hcp or fcc arrangement respectively. Their ideal, or
average, structures have linear Si–O–Si bonds, as illustrated in the top panel of figure 1, which
are usually thought to be chemically unreasonable owing to the relatively large energy required
to straighten the bond from the more normal bond angles of 145–150◦. Instead, it is possible
that local disorder of the orientations of the SiO4 tetrahedra could allow the Si–O–Si bond
angles to be lowered to values that are chemically more reasonable, as illustrated in figure 2.
On a short length scale these two phases have similar dynamic disorder of the positions of the
oxygen atoms. This paper gives a quantitative analysis of this point.

The similarities in bonding, density and position of the first diffraction peak in amorphous
silica andβ-cristobalite, have led to the suggestion that there is a close structural relationship
over short length scales between these two phases [5, 6]. In addition, the observation of
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Figure 1. Layers containing hexagonal rings of SiO4
tetrahedra corresponding to the (001) and (111) layers
in HP-tridymite andβ-cristobalite respectively. The top
panel shows the tetrahedra in ideal orientations, with
the hexagonal unit cell of HP-tridymite marked. The
middle panel shows a layer of tetrahedra extracted from
the RMC refined configuration of HP-tridymite at 550◦C.
The bottom panel shows a layer of tetrahedra extracted
from the RMC refined configuration ofβ-cristobalite at
300◦C.

high-pressure amorphization [7] has made the inter-relationship of the silica structures the
subject of recent theoretical [8] and molecular dynamics simulation work [9]. In this paper
we give the first detailed quantitative analysis of the relationship between the structures of the
amorphous and crystalline silica phases over the length scale 0–10 Å obtained from neutron
total scattering measurements undertaken on polycrystalline samples ofα- andβ-quartz,α-
andβ-cristobalite and HP-tridymite. These measurements give information about both long-
range crystallographic order and short-range atomic arrangements. In the high-temperature
crystalline phases the structure over short length scales may differ significantly from that
corresponding to the “average” structure given by the long-range order. Total scattering
measurements are able to provide direct information about this difference.

Accurate and reliable bond lengths and bond angles, independent of the refinement
artifacts, are assuming an increased importance in theoretical studies of silica phases [10].
It is often noted that apparent bond lengths from crystal structure refinement have anomalous
behaviour on heating. Having described the problems in using crystallographic bond lengths
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Figure 2. Ideal face-centred cubic crystal structure ofβ-cristobalite (left) showing linear Si–
O–Si bonds and apparent shortening of the Si–O distances. In practice the oxygen atoms have
a distribution of positions around the midpoints of the Si–Si vectors, as illustrated on the right,
leading to Si–O–Si bond angles nearer 145◦.

above (see figure 2) we show here how the actual distribution of bond lengths and bond angles
in the disordered silica phases is markedly different from that given by the crystal structure
refinements.

2. Method

2.1. Experiment

The neutron total scattering measurements were obtained using the LAD time-of-flight
diffractometer at ISIS, with data collected from banks of detectors centred on seven different
scattering angles. Powdered samples were contained within a thin-walled cylindrical vanadium
can of 8 mm diameter inside a standard neutron furnace with a vanadium foil heater.

The quartz sample was ground from natural crystals. The cristobalite sample was produced
by heating silica glass within the cristobalite stability field. The tridymite sample was prepared
by a chemical route, and was kindly provided by Professor C M B Henderson (Manchester).

The data reduction involved subtracting measurements of the background signal and
making corrections for the attenuation of the neutron beam by the sample, vanadium can,
and furnace. A standard silicon sample was used to calibrate the values of` sinθ for each
detector, wherè is the total neutron flight path andθ is half the scattering angle. A standard
vandium sample was used to calibrate detector efficiencies and to normalize the data onto an
absolute scale [11], giving the final total structure factorF(Q).

In addition to formingF(Q), we also used standard normalization procedures to obtain
the powder diffraction pattern from the high-angle detectors as a function of flight time
(proportional tod-spacing) in order to perform Rietveld refinement of each crystal structure.

2.2. Data analysis

2.2.1. Rietveld analysis.Rietveld analysis was performed on each of the diffraction patterns,
using the program TF12LS based on the Cambridge Crystallographic Subroutine Library
[12]. This allows refinement of an undulating background (including that due to the diffuse
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scattering) by the use of Chebychev polynomials. Full anisotropic temperature factors for all
atoms were used in the refinements in order to approximately represent disorder – this led to
a significant improvement in the agreement of the calculated diffraction pattern with the data,
and did not lead to a significant non-spherical distribution of the positions of the silicon atoms.
The refined anisotropic thermal parameters for the oxygen atoms are large and elongated in
the plane that bisects the Si–Si vector as expected from the distribution of oxygen positions
indicated in figure 2—this has been described in detail forβ-cristobalite [13]. The refinements
were based on published structures of each phase [1].

2.2.2. Total scattering measurements.In total scattering measurements, the corrected total
structure factorF(Q) contains the Bragg and diffuse scattering, and can be cast in terms of
the total radial distribution functionsG(r) or T (r):

F(Q) = ρ
∫ ∞

0
4πr2G(r)

sin(Qr)

Qr
dr (1)

G(r) =
n∑
i=1

n∑
j=1

cicj bibj
[
gij (r)− 1

]
(2)

T (r) = r
[
G(r)

/∑
i

(cibi)
2 + 1

]
(3)

ci andbi are the proportion and neutron scattering length respectively of atom typei, and
gij (r) are the partial radial distribution functions which correlate the distances between atoms
i andj at an instant of time. In a crystalline material, the Bragg peaks, which are purely
elastic scattering, give the time-average periodic structure. On the other hand,F(Q), which
contains the total scattered intensity integrated over all energies, gives information about
the instantaneous structure through pair correlation functions, and thereby information about
fluctuations in the structure away from the average structure.

When a crystal structure is dynamically disordered, the time-averaged periodic and
instantaneous local structures may be very different. The time-average structure, obtained
from the Rietveld refinement, gives the separations between the average atomic positions. On
the other hand, the peak positions inT (r)give a direct measure of the instantaneous interatomic
separations, which invariably will be slightly longer than the separations between the average
positions. The overallT (r) functions from the different samples are shown in figure 3, together
with the partial radial distribution functionsgij (r) using the methods described below.

2.2.3. Reverse Monte Carlo refinement.In order to investigate the disordered structures
further, we have produced three-dimensional structures that are fully consistent with the average
and instantaneous structures using the reverse Monte Carlo (RMC) technique [14], adapted to
refine a constrained initial structure [15, 16]. The initial structure is maintained by requiring
the SiO4 tetrahedra to remain of regular size and shape, with the length of the Si–O bond
determined from the lowest-r peak inT (r), and by retaining the connectivity between atoms
in the structure. The tetrahedra are then allowed to relax with Gaussian distributions of widths
σSi−O andσO−Si−O about the mean Si–O bond length (RSi−O) and the ideal tetrahedral O–Si–O
bond angle (2O−Si−O), so that they approximately reproduce the low-r peak widths inT (r).
The model is then refined by requiring the calculatedF(Q) to fit the experimentalF(Q), by
slowly increasing the weighting of the fit toF(Q) with respect to the constraints until good
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Figure 3. Total and partial radial distribution functions
T (r) and gij (r) obtained from the RMC analysis
(successive functions are offset vertically by 2 for clarity,
and the labelling in the bottom plot is the same for all
plots). Dashed lines correspond to the positions of the
distinct peaks in the glassT (r) above 3 Å. The two peaks
below 3 Å are the Si–O and O–O distances within the
SiO4 tetrahedra. The direct transformedT (r) for β-
cristobalite and the calculatedT (r) for amorphous silica
(see text for details) are both shown superimposed on
their respective RMC generatedT (r).

agreement is obtained. Formally, the agreement is defined by

χ2 =
N∑
i=1

[
Fcalc(Qi)− Fexp(Qi)

]2
/σ 2(Qi)

+
∑

Si−O bonds

[
rSi−O− RSi−O

]2
/σ 2

Si−O

+
∑

O−Si−O angles

[
θO−Si−O−2O−Si−O

]2
/σ 2

O−Si−O (4)

whereN is the number of different values ofQ in the data, ‘calc’ and ‘exp’ refer to the calculated
and experimental quantities respectively,rSi−O is a Si–O bond length, andθO−Si−O is an O–
Si–O angle. In principle the weighting parametersσ(Qi) are determined by the experimental
error on each data point, but in practice they were treated as a single parameter (independent
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of Q) that was adjusted to change the relative importance of the data and constraints in the
refinement.

In each crystalline case, the starting model was produced from atom coordinates obtained
from Rietveld refinement of our data. The starting glass model and refinement details are
described in [15, 16]. Configurations of around 20 000 atoms (varying from phase to phase)
were used with periodic boundary conditions, and an identical fitting procedure was used in
each case. The agreement between the experimentalF(Q) and the direct transformedT (r)
from the RMC was excellent in each case. Spatial averaging showed that the atom density
distributions were consistent with the Rietveld refined temperature factors.

3. Results

3.1. Bond lengths

The separations of theaveragepositions of the atoms within the SiO4 tetrahedra obtained
from the Rietveld analysis are given in table 1, and compared with the average instantaneous
interatomic distances obtained from the peaks in thegij (r) andT (r) functions (figure 3). The
average structures of the disordered crystalline silica phases obtained from Rietveld refinement
of the Bragg peaks show an apparent contraction of the SiO4 tetrahedra. We note that although
the bond lengths from Rietveld analysis may be quoted to high precision, they are based on
average atom positions which in the simplest systems (such asβ-cristobalite) may be derived
solely from the lattice parameters. In contrast, the less precise bond lengths obtained from
T (r) do incorporate the effect of thermal disorder and are more representative of the local
structure. These do not show a contraction of the SiO4 tetrahedra.

Table 1. Bond lengths, angles and atomic densities (ρ) for the ambient-pressure phases of silica at
various temperatures. The data not in brackets are from analysis of the crystal structures from the
Rietveld analysis, the data in round brackets are obtained from theT (r) data, and the data in square
brackets are obtained from analysis of the RMC configurations (with FWHM of the distributions
given in brackets). Data for the glass are from [15, 16]. Typical errors on bond lengths from
Rietveld analysis are in the fourth decimal place, whereas those from fitting the peaks inT (r) are
one or two in the last decimal place quoted.

α-quartz α-quartz β-quartz α-cristobalite β-cristobalite HP-tridymite Glass

T (◦C) 20 500 620 200 300 550 20
ρ (Å−3) 0.0795 0.0773 0.0761 0.0692 0.0661 0.0655 0.0657
Si–Si (Å) 3.059 3.081 3.093 3.077 3.089 3.068/3.109 —

(3.06) (3.11) (3.12) (3.08) (3.11) (3.10) (3.10)
Si–O (Å) 1.609 1.602 1.588 1.597 1.544 1.534,1.555 —

(1.609) (1.612) (1.613) (1.606) (1.606) (1.613) (1.617)
O–O (Å) 2.616–2.645 2.601–2.628 2.565–2.611 2.590–2.636 2.522 2.532 —

(2.632) (2.626) (2.627) (2.623) (2.623) (2.634) (2.626)
O–Si–O (◦) 108.7–110.5 108.4–110.3 107.8–110.6 108.3–111.2 109.5 108.8/110.1 —

(109.8) (109.1) (109.0) (109.5) (109.5) (109.5) (108.6)
— [109(5)] [109(5)] [109(5)] [109(5)] [109(5)] [109(7)]

Si–O–Si (◦) 143.7 148.5 153.9 148.9 180 180 —
(144) (149) (151) (147) (151) (148) (147)
— [145(14)] [148(15)] [144(11)] [148(15)] [150(16)] [144(21)]

Si–Si–Si (◦) 91.2,106.9, 91.1,107.5, 91.1,107.9, 94.5,108.5, 109.5 109.2,109.7 —
123.3,141.6 126.3,138.5 132.3 124.2
— [91(5),107(5), [93(4), 108(6), [93(4), 108(6), [109(8)] [109(8)] [106(28)]

125(5),139(7)] 125(5)] 125(5)]
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3.2. Comparisons of theT (r) functions for the crystalline phases

A key result from the comparison of thegij (r) andT (r) functions for the two crystalline
phases of cristobalite in figure 3 is that there are significant differences for distances greater
than 5 Å. This dispels a popular theory thatβ-cristobalite is merely a collection of ordered
α-cristobalite domains [17]. In fact the RMC configurations ofβ-cristobalite, figure 1, do not
show domains of any symmetry. Moreover, domains ofα-quartz are not found in the RMC
configurations ofβ-quartz. This is reflected in the small differences in the peaks in the radial
distribution functions in the range 5–10 Å.

3.3. Comparison of theT (r) functions for the crystalline and amorphous phases

From figure 3 we also find a remarkable correspondence between the radial distribution
functions from HP-tridymite,β-cristobalite and the glass. The oscillations inT (r) for HP-
tridymite andβ-cristobalite remain in phase until well above 10 Å and there is very little
to distinguish between HP-tridymite and glass in thegij (r) apart from the longer-range
oscillations in HP-tridymite.

We can make a simple quantitative comparison of the structure of amorphous silica with
HP-tridymite andβ-cristobalite by assuming that the correlation between the local structures
of the amorphous and crystalline phases decays exponentially with a correlation lengthξ . Thus
we can approximateg(r) for the glass as a sum of a contribution from the (disordered) crystal
structure,gcrystal(r), and from a random,grandom(r), arrangement:

gglass(r) = exp(−r/ξ)gcrystal(r) +
[
1− exp(−r/ξ)] grandom(r)

= exp(−r/ξ) [gcrystal(r)− 1
]

+ 1 (5)

wheregrandom(r) = 1. We have constructedgglass(r) using the RMC results for HP-tridymite
(rather thanβ-cristobalite since the orientational order in HP-tridymite more closely resembles
that in the glass, as discussed below). The best fit for the partialg(r) functions is obtained
using a correlation length ofξ = 7.5 Å for gSi−O(r) andξ = 11 Å for gO−O(r). Figure 3
includes, for comparison with the actual data, the overallT (r) for the glass reconstructed
from the individualgglass(r) that were calculated using the HP-tridymite data and a value of
ξ = 7.5 Å in Equation (5). It can be seen that this resembles the measuredT (r) for silica glass
reasonably well. Thus we can say that the similarities between the crystalline and amorphous
phases extends over the length scale ofξ . For comparison, the average length (Si to Si) across
a ring of six SiO4 tetrahedra in the disordered crystalline phases is about 6 Å.ξ is therefore
too short to admit a “microcrystalline” interpretation of the glass structure, and one cannot say
that the structures areidenticalover this length scale. Instead, this result indicates that up to
the distanceξ there are regions of the glass that have the structure elements of the crystal, and
beyond this distance the differences between crystal and glass diverge.

The finite range of the correlations between the amorphous and crystalline structures
are highlighted by the orientational relationships between neighbouring SiO4 tetrahedra. The
distributions of Si–O–Si bond angleθ , f (θ), deduced from the RMC configurations are shown
in figure 4. The similarities between the two disordered crystalline phases and the glass are
striking. For the disordered phases, we found that there is no prefered orientation of the Si–O–
Si plane with respect to the orientations of the SiO3 pyramids of the rest of the tetrahedra—the
middle atoms in the Si–O–Si bonds lie uniformly distributed on an annulus around the Si–Si
vector. As an interesting aside, we have also investigated any correlations betweenθ and
the Si–O bond length, and contrary to quantum chemical calculations [18, 19] we find that
there is no correlation in any of the phases. The distributions of the torsional anglesφ, g(φ)
(figure 4) show rather more contrast between the disordered phases. Inβ-cristobalite, the
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crystallographic symmetry gives a mean valueφ = 60◦, which is reflected in the calculated
form of g(φ). However, there is a wide distribution in the torsional angles:g(φ) has a full
width of 54◦. In HP-tridymite, the crystallographic symmetry gives mean values ofφ = 60◦

for 75% of the pairs of neighbouring tetrahedra, andφ = 0◦ for remaining pairs. Again, there
is a wide distribution about each mean value, with a width of about 47◦. By contrast, the
distributiong(φ) for silica glass is virtually constant for allφ. To appreciate the difference
we note that a distribution with two peaks of equal heights and widths of around 50◦ centred
onφ = 0◦ andφ = 60◦ will give a nearly-flat distributiong(φ). In this regard, the glass can
simply be seen to have a similarg(φ) to HP-tridymite without the crystallographic constraints
on mean values ofφ.

Figure 4. Bond angle distribution functions; the upper plot showsf (θ) for the Si–O–Si bonds,
and the lower plot showsg(φ) of the torsional angles. The angles are defined in the top corners of
each diagram.

3.4. Calculation of three-dimensional diffuse scattering pattern forβ-cristobalite

In general, RMC modelling of a single one-dimensional diffraction pattern may not necessarily
produce a unique three-dimensional structure. However, by careful use of chemical constraints
and an appropriate starting structure, models produced by RMC refinement may be able to
reproduce the three-dimensional short-range disordered structure faithfully. To test this, we
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have calculated the diffuse scattering fromβ-cristobalite in the(hk0) section of the three-
dimensional reciprocal lattice directly from the RMC configurations, figure 5. This shows a
set of well-defined streaks along the〈100〉 and〈110〉 directions in reciprocal space. These
streaks are fully consistent with the streaks of diffuse scattering observed in electron diffraction
studies ofβ-cristobalite [20, 21], and also with the set of calculated low-energy rigid unit
modes [22–24]. From this result we have established that RMC refinement with appropriate
constraints (which themselves are based on the data) is able to reproduce the full three-
dimensional structure of the disordered crystals accurately.

Figure 5. Diffuse scattering fromβ-cristobalite at 300◦ calculated from the RMC configurations.
The lines of diffuse scattering correspond to the predictions of the RUM model [22–24].
Experimental TEM data [20], which show the same lines are shown as the insert in the top right
corner.

4. Discussion: the similarites between the local structures of amorphous and crystalline
silica

The structural similarities betweenβ-cristobalite, HP-tridymite and amorphous silica over the
length scale 0–10 Å can now be interpreted in terms of the internal flexibility of the cristobalite
and tridymite structures as deduced using the rigid unit mode model [23], which is concerned
with ways in which the structure can distort by rotations and displacements of undeformed
SiO4 tetrahedra. This model, confirmed by diffuse electron [20,21] and inelastic neutron [24]
scattering measurements, shows that there is far more internal flexibility in theβ-cristobalite
and HP-tridymite structures than in any of the corresponding low temperature phases or the
quartz phases. Since the disordered glass structure needs considerable flexibility of the shapes
of the rings of linked tetrahedra in order to form a continuous random network, it is not
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surprising that the glass structure uses structural elements of these flexible phases. As a result
the local structural elements from theβ-cristobalite and HP-tridymite structures in the glass
will be distorted and therefore unlike the ideal structures of these phases.

By inverting the above argument, this internal flexibility will distort the local structures
of the crystalline phases to give disorder similar to that found in the glass. The ideal structures
of β-cristobalite and HP-tridymite, as noted above, have linear Si–O–Si bonds, and the
tetrahedra rotate within the allowed rigid unit mode flexibility to change the bond angle to
a more favourable value. This is illustrated in figure 1, which shows how the local disorder is
accommodated within the layers of the average structures ofβ-cristobalite and HP-tridymite
with displaced and rotated SiO4 tetrahedra on a regular lattice. The wide distribution of ring
shapes (which would be perfect hexagons within the ideal structure) is strongly reminiscent of
the glass structure †. In the crystalline phases this disorder is dynamic, arising from the RUM
phonons supported by the underlying periodic structure and driven by the need to avoid local
configurations with linear Si–O–Si bonds, whereas in the glass the disorder is static, forced by
the topological disorder which does not change over short time scales. The low-temperature
ordered phases do not have the same flexibility as the high-temperature crystalline phases, and
as a result have little similarity with the glass phase.

Although we have only shown results from a single compound, RMC refinement of the
structural disorder in a crystalline material using neutron total scattering is a completely
general technique. Time-of-flight neutron diffraction provides high quality Bragg data for
Rietveld refinement and total scattering data from the same measurement. RMC refinement
produces structural models which are internally consistent with the average (Rietveld refined)
and instantaneous structures. With the use of appropriate constraints, RMC refinement could
be used to characterize the structural disorder in (for example) more complex silicate structures
such as zeolites [25], orientationally disordered crystals such as C60 [26] or the various phases
of ethanol [27, 28], locally distorted structures such as CMR materials [29] or even ionic
conductors [30].

In conclusion, we have shown experimentally that the structure of amorphous silica over
the length scale 0–10 Å has similarities with that ofβ-cristobalite and HP-tridymite, but is
dissimilar to either phase of quartz orα-cristobalite. The similarities can be understood in
terms of the increased flexibility of the two disordered crystalline phases. We have been
able to determine the local structures of these disordered crystalline systems by marrying the
opportunities of total scattering and Rietveld refinement via computer modelling. This has
not only allowed us to make a direct experimental determination of the locally disordered
crystal structures but also to compare the corresponding glass and crystal structures directly
and quantitatively.
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